
www.manaraa.com

Experiences with Honey-Patching in Active Cyber Security Education

Frederico Araujo Mohammad Shapouri Sonakshi Pandey Kevin W. Hamlen
The University of Texas at Dallas

{frederico.araujo, mxs139130, sbp140130, hamlen}@utdallas.edu

Abstract
Modern cyber security educational programs that empha-
size technical skills often omit or struggle to effectively
teach the increasingly important science of cyber decep-
tion. A strategy for effectively communicating deceptive
technical skills by leveraging the new paradigm of honey-
patching is discussed and evaluated. Honey-patches mis-
lead attackers into believing that failed attacks against
software systems were successful. This facilitates a new
form of penetration testing and capture-the-flag style ex-
ercise in which students must uncover and outwit the
deception in order to successfully bypass the defense. Ex-
periences creating and running the first educational lab to
employ this new technique are discussed, and educational
outcomes are examined.

1 Introduction

Industrial and governmental demand for employees with
superlative, comprehensive cyber security expertise has
risen meteorically over the past several years. Cyber secu-
rity job postings have increased 74% from 2007 to 2013—
over double the rate of increase of other IT jobs—and take
24% longer to fill on average than other IT job postings [8].
One reason demand for high expertise is eclipsing sup-
ply is the increasing sophistication of threats faced by
cyber professionals. In 2014, cyber attacks against large
companies rose 40%, yet malicious campaigns are becom-
ing smaller and more efficient, using 14% less email to
successfully infiltrate victim networks [15].

This underscores a need for effective yet broadly de-
ployable educational strategies for all aspects of cyber
security training. Yet some cyber skills are exceptionally
difficult to convey effectively in a classroom setting. A
prime example is cyber deception, which is becoming
an increasingly central ingredient of many offensive and
defensive scenarios (cf. [1, 16, 21]). Deceptive social en-
gineering attacks in which attackers impersonate govern-
ment officials account for over $23,200 in losses per day

in 2014, according to the FBI Internet Crime Complaint
Center [13]. Advanced malware attacks often undertake
elaborate user deceptions, such as Stuxnet’s replaying of
pre-recorded, normal equipment readings to operators at
the Natanz nuclear facility during its attack [14]. In light
of such practices, the U.S. Air Force has announced cyber
deception as a specific focus area for 2015–2016 [22].

To raise defender vigilance against deceptive threats,
a different way of thinking is required—one that adopts
the thinking process of the adversary [17, 19, 23]. Modern
defenders must understand the psychology of attackers,
and be aware of their strategies and techniques in order to
anticipate their actions. In active defense contexts, they re-
quire skills for both creating and mitigating deceptive soft-
ware. Awareness of such issues facilitates development of
safer programs, and limits the attack surface exposed to
cyber criminals.

However, effectively teaching such awareness in a tra-
ditional classroom setting can be challenging. Typically,
the scholastic experience is contrived, with lectures and
assignments following a structured sequence of topics
through which students expect to be guided by instruc-
tors, and where reading materials provide the theoretical
backbone of a rehearsed, time-honored mode of thinking.
From a security standpoint, it can be seen as antithetical to
most real-world cyber security threat encounters involving
advanced adversaries: Modern, targeted cyber threats are
often surreptitious, diverse, and unpredictable. Advanced
threat-actors are aware of standard educational practices,
and therefore adopt strategies that run counter to them.
To defend against such threats, future cyber security pro-
fessionals must be empowered with techniques that can
delay reconnaissance efforts, degrade exploitation meth-
ods, and confound attackers into moving and acting in a
more observable manner.

Among the most promising approaches towards allevi-
ating this problem are Capture the Flag exercises (CTFs),
which are commonly organized as competitions where
teams score points by exploiting opponents and defend-
ing from attacks in real time. However, although such

1

www.manaraa.com

exercises are of great educational value in that they offer
lessons not easily taught in a classroom and provide a
realistic, safe environment for practicing offensive tech-
niques, they often lack emphasis on active cyber defense
topics (cf. [12]). We believe that ways must be sought to
ethically teach students deception and anti-deception tech-
niques in order to make networks more resilient against
the emerging wave of advanced threats.

Toward this end, we have been examining honey-
patching [2,3] as a new tool for effectively teaching active
defense and attacker-deception to students in the Com-
puter Science Department at The University of Texas at
Dallas (UTD). Honey-patching is a recent technique de-
veloped to deceive, misdirect, and disinform attackers by
deceptively portraying the outcome of blocked attacks
to attackers. Specifically, honey-patches are software
security patches that fix newly discovered software vul-
nerabilities in such a way that future attempted exploits
of the patched vulnerabilities appear successful to attack-
ers. This masks patching lapses, impeding attackers from
easily discerning which systems are genuinely vulnerable
and which are actually patched systems masquerading as
unpatched systems. It also affords defenders tremendous
opportunities to gather information about the threat (e.g.,
collecting and analyzing previously unseen malware, for
possible attack attribution), feed disinformation to the at-
tacker in the form of falsified honey-data (cf., [6, 20, 24]),
and even deploy counterattack measures to strike back at
attackers.

In April of 2015 we organized a small-scale computer
lab at UTD to raise awareness about this technique and the
broader concepts surrounding cyber deception and anti-
deception. The lab was organized with the help of UTD’s
Computer Security Group (CSG) student association, con-
stituting the first effort to teach honey-patching techniques
and strategies outside a research setting. Although small
in its size (seven students completed the lab session), the
response we obtained from the participants of this early
test were extremely positive. Our goal is to relate our
experiences to other educators, and to recommend meth-
ods and software tools that we have found pedagogically
effective for teaching students these important skills. We
also plan to leverage this initial experience to contribute
larger-scale CTF exercises to major competitions in the fu-
ture, such as TexSAW (Texas Security Awareness Week),
which is held annually at UTD every October.

The research reported herein is covered by UTD IRB
approval MR15-185. The educational lab and subsequent
data analysis were conducted by personnel who are NIH-
certified in protection of human research subjects. The lab
was organized and overseen by student officers trained in
risk management, including ethical and nondiscriminatory
treatment of individuals.

container pool

target

decoy

server application
unpatched clone

attacker
trigger

requestserver application
honey-patched

response

clone

reverse proxy

controller

Figure 1: Architectural overview of honey-patching.

2 Honey-Patching

Patching continues to be the most ubiquitous and widely
accepted means for addressing newly discovered secu-
rity vulnerabilities in commodity software products. In
2014 alone, major software vendors reported over 7000
patched (or soon-to-be-patched) separate security vulner-
abilities to the National Vulnerability Database, almost
25% of which were ranked highest severity [9]. However,
despite the increasingly prompt availability of security
patches, a majority of attacks in the wild continue to ex-
ploit vulnerabilities that are known and for which a patch
exists [4, 5, 11]. This is in part because patch adoption is
not immediate, and may be slowed by various considera-
tions, such as patch compatibility testing, in some sectors.

As a result, determined, resourceful attackers often
probe and exploit unpatched, patchable vulnerabilities in
their victims. For example, a 2013 security audit of the
U.S. Department of Energy revealed that 60% of DoE
desktops lacked critical patch updates, leading to a com-
promise and exfiltration of private information on over
100,000 individuals [10]. The prevalence of unpatched
systems has driven the proliferation of tools and technolo-
gies via which attackers quickly derive unique, previously
unseen exploits from patches [7], allowing them to infil-
trate vulnerable systems.

Attackers are too often successful at finding and ex-
ploiting patching lapses because conventional software
security patches advertise rather than conceal such lapses.
For example, a request that yields garbage output from an
unpatched server, but that yields an error message from
a patched server, readily divulges whether each server
is vulnerable. Cyber criminals therefore quickly and ef-
ficiently probe large networks for vulnerable software,
focusing their attacks on susceptible targets.

To counter this weakness, honey-patching, depicted
in Figure 1, has been recently proposed as an effective
means of adding deceptiveness to software patches. In
response to malicious inputs, honey-patched applications
clone the attacker session onto a confined, ephemeral,
decoy environment, which behaves henceforth as an un-
patched, vulnerable version of the software. This poten-
tially augments the server with an embedded honeypot

2

www.manaraa.com

Listing 1: Abbreviate patch for CVE-2014-6271
1 + if ((flags & SEVAL FUNCDEF) && command->type != cm function def)
2 + {
3 + internal warning (”%s: ignoring function definition attempt”, ...);
4 + should jump to top level = 0;
5 + last result = last command exit value = EX BADUSAGE;
6 + break;
7 + }

Listing 2: Honey-patch for CVE-2014-6271
1 if ((flags & SEVAL FUNCDEF) && command->type != cm function def)
2 {
3 + hp fork();
4 + hp skip(
5 internal warning (”%s: ignoring function definition attempt”, ...);
6 should jump to top level = 0;
7 last result = last command exit value = EX BADUSAGE;
8 break;
9 +);

10 }

that waylays, monitors, and disinforms criminals. De-
ceptive honey-patching capabilities thereby constitute an
advanced, active defense technique that can impede, con-
found, and misdirect such attacks, and significantly raise
attacker risk and uncertainty.

Honey-patching Shellshock. In September 2014 we
honey-patched the Shellshock GNU Bash remote com-
mand execution vulnerability (CVE-2014-6271) [18]
within hours of its public disclosure as part of our
AFOSR/NSF active defense and attack-attribution re-
search program. Shellshock was one of the most severe
vulnerabilities in recent history, affecting millions of then-
deployed web servers and other Internet-connected de-
vices. This high impact combined with its ease of exploita-
tion makes it a prime candidate for penetration testing
exercises.

Listing 1 shows an abbreviated, vendor-released patch
in diff style for Shellshock. The patch introduces a condi-
tional that validates environment variables passed to Bash,
declining function definition attempts. Prior to this patch,
attackers could take advantage of HTTP headers as well
as other mechanisms to enable unauthorized access to the
underlying system shell of remote targets. This patch ex-
emplifies a common vulnerability mitigation: dangerous
inputs or program states are detected via a boolean test,
with positive detection eliciting a corrective action. The
corrective action is typically readily distinguishable by
attackers—in this case, a warning message is generated
and the function definition is ignored.

Listing 2 presents an alternative, honey-patched imple-
mentation of the same patch. In response to a malicious
input, the honey-patched application forks itself onto a
confined, ephemeral, decoy environment, and behaves
henceforth as an unpatched, vulnerable version of the
software. Specifically, line 3 forks the user session to a
decoy container, and macro hp skip in line 4 elides the
rejection in the decoy container so that the attack appears
to have succeeded. Meanwhile, the attacker session in

1:00 PM 3:00 PM

1:25 PM - 2:00 PM

Exploitation Survey Feedback
1:05 PM - 1:25 PM

Preparation
2:10 PM - 2:50 PM

Active Defense
1:25 PM - 2:00 PM

Exploitation
1:25 PM - 2:00 PM

Exploitation

Figure 2: Lab timeline and overview.

the original container is safely terminated (having been
forked to the decoy), and legitimate, concurrent connec-
tions continue unaffected.

As a result, adversaries attempting to exploit Shellshock
in a victim server that has been honey-patched receive
server responses that seem to indicate that the exploit has
succeeded. However, the shell commands they inject are
actually executing in a decoy environment stocked with
disinformation for attackers to explore. This provides
an ideal environment for students to penetrate as part of
exercises focused on cyber deception. Some of their at-
tacks may genuinely hijack the victim server (e.g., those
that exploit unpatched vulnerabilities), others observably
fail (e.g., those that exploit patched vulnerabilities), while
yet others only appear to succeed (e.g., those that exploit
honey-patched vulnerabilities). The challenge is to dis-
cover that a deceptive outcome exists and counter it.

3 Lab Overview

We organized an open lab with the main goal of educating
students on offensive security and active cyber defense
concepts using honey-patching as the underlying frame-
work. To boost students expectation and interest, we
selected the Shellshock [18] vulnerability as our unit of
study. This choice was motivated by the scale and impact
of Shellshock (severity 10 out of 10), and the low access
complexity of the attack, suitable for the two hours allot-
ted for the lab. Figure 2 shows the lab timeline with the
approximate durations of each of its three parts.

Preparation. The first part provided an overview of the
lab session, followed by a brief introduction to Shellshock.
As part of this description, we covered the historical back-
ground and relevancy of Bash, and detailed the various at-
tack vectors that can be used to exploit server applications
running the vulnerable shell. In addition, we introduced
basic background on our particular target server deploy-
ment (e.g., Apache, CGI). At the end of this exposition,
we ran an interactive demonstration of Shellshock to test
students’ understanding of the vulnerability and ensure
that they were familiarized with the lab environment.

Exploitation challenge. The hands-on part of the lab
consisted of a challenge. Students were asked to attack
our server and attempt to escalate their privileges after
gaining access to the server. To complete this exercise,

3

www.manaraa.com

students needed to build their own exploits and apply the
knowledge acquired in the preparation session of the lab.
At the end of this exercise, we asked students to fill out
an online survey. In order to obtain an unbiased feedback,
students were unaware that they were attacking a honey-
patched system. We only revealed this information in the
third and last part of the lab.

Deception-based active defense. In the last part of the
lab, we first provided a brief overview of deception-based
techniques for active defense and offensive countermea-
sure concepts (e.g., honeypots, decoys, beacons). Then
we introduced students to honey-patching and disclosed
the fact that our target server was honey-patched, explain-
ing its underlying mechanisms, including misdirection
and monitoring capabilities. We also demonstrated the
process involved in honey-patching Shellshock. To con-
clude the exercise, we gave students the opportunity to
attack the system once again, for another 30 minutes, and
then presented and discussed the monitoring logs gener-
ated by the honey-patched system. Before we adjourned,
we asked students to fill out a second survey providing
feedback about their learning experience.

4 Lab Design

From the provisioning of the required physical resources
and setup of the lab environment to the preparation of
tutorials and challenges, there is a considerable amount
of effort involved in organizing a hands-on cyber security
lab. Even though the number of students was small, we
designed this exercise to scale to a much larger number
of participants. In what follows, we highlight some of the
preparation steps for this lab.

4.1 Infrastructure & Preparation
Figure 3a illustrates the infrastructure created for the lab.
We built this infrastructure atop VMWare’s ESXi, allow-
ing us to quickly and efficiently deploy many linked VMs
as needed to create individual guest environments for each
participant. The target server and attacker VMs were de-
ployed within the same subnet, and access control rules
isolated the lab from the rest of the university network.
This created a safe environment in which exploits could
be attempted without risk to the surrounding network.

Target server. The target server was honey-patched
against Shellshock and hosted a CGI shell script deployed
atop Apache for processing user authentication in a web
application specifically created for this lab. To entice stu-
dents to further exploit the system, decoys were generated
with fake user accounts and honey-files containing “inter-
esting” information, such as fake credentials and weakly
encrypted user account passwords. To gain escalated ac-
cess to the decoy, students could discover vulnerable paths

Listing 3: Decoy’s file-system monitoring
1 25/04/2015−13:24:25 /usr/local/apache/cgi−bin/ I Shocked You CREATE
2 25/04/2015−13:24:25 /usr/local/apache/cgi−bin/ I Shocked You OPEN
3 25/04/2015−13:24:25 /usr/local/apache/cgi−bin/ I Shocked You ATTRIB
4 25/04/2015−13:24:25 /usr/local/apache/cgi−bin/ I Shocked You CLOSE...

Listing 4: Decoy’s deep inspection of network packets
1 0x0020: 8018 00e5 1aed 0000 0101 080a 0032 9a092..
2 0x0030: 0032 9a09 3261 0d0a 495f 5368 6f63 6b65 .2..2a..I Shocke
3 0x0040: 645f 596f 750a 6c6f 6769 6e2e 6367 690a d You.login.cgi.
4 0x0050: 6d69 6e65 0a6e 6f5f 796f 755f 6469 646e mine.no you didn
5 0x0060: 740a 0d0a t...

concealed within the system. For example, participants
might transfer the encrypted password file to their own
machines, and crack it with a password cracker (e.g., us-
ing a dictionary attack).

Monitoring. Decoys also hosted software monitors that
collected fine-grained attack information. To minimize
the performance impact on decoys, we used two powerful
and highly efficient tools: inotifywait (to track modifica-
tions made to the file system), and tcpdump (to monitor
ingress and egress of network packets). To avoid possible
tampering with the collected data, all logs were stored
outside the decoy environments. In addition, we tuned
both monitoring tools to avoid generating spurious out-
puts (e.g., by excluding certain directories and limiting
the monitored network traffic). Listings 3 and 4 show
sample monitoring logs produced after an attack executed
by a student. The logged file system events reveal that
the student created a file named I Shocked You in the
server’s (actually, a decoy’s) CGI directory and changed
the created file’s permissions. In the network logs, we see
the response payload returned to the student for an attack
that ran the ls command on the server.

Attacker environment. Each student was assigned a
guest VM prepared specifically for the hands-on exercises.
Each VM ran Ubuntu 14.04, and came with the minimal
tools required to complete the demonstration session (i.e.,
curl, nc). Student accounts were configured with admin-
istrative privileges, and internet access was not prohibited,
allowing easy installation of additional tools as needed.
For example, several students downloaded and installed
password crackers to use during the hands-on session.

4.2 Interactive Demonstration

The demonstration delivered at the end of the prepara-
tion session consisted of a no-one-left-behind exercise,
in which the instructor explains each step of the demo
and waits until all students have successfully completed
it. This strategy worked well given our small group, but
would probably need to be adjusted for a larger number
of students (e.g., by having more tutors walking around
and assisting whoever gets stuck). We used this demo to

4

www.manaraa.com

VMware ESXi

server

attacker1

attackern

 campus
networklab

subnet

(a) Lab subnet and virtualization infrastructure

attacker
server

curl -A "() {:;};/bin/bash -i >&
/dev/tcp/ip/port 0>&1" ...

nc -l port

reverse shell
login.cgi

(b) Obtaining a reverse shell with Shellshock

Figure 3: Lab preparation illustrating (a) lab subnet and virtualization infrastructure and (b) attack demonstration
leveraging Shellshock to obtain a reverse shell.

further clarify concepts introduced in the initial lab pre-
sentation and to ensure that all students started the free
hands-on session with a basic working knowledge of the
techniques used to exploit Shellshock. For instance, Fig-
ure 3b illustrates one of the attacks we demonstrated, in
which the attacker leverages Shellshock to obtain a reverse
shell on the vulnerable server.

4.3 Participants
The lab was open to any student willing to participate,
and we did not impose any restrictions on required back-
ground. To reach interested students, we announced the
lab through the homepages and mailing lists of the secu-
rity and computer student organizations at UTD. To catch
students’ attention, we promoted the lab as a hands-on
challenge on Shellshock exploitation and defense.

The participants were all CS majors, with limited ex-
perience in cyber security (ranging from none to some),
with a few who had performed penetration tests before.
The lab was staffed by one PhD student and two Mas-
ters students who acted as tutors for the lab and offered
participants individual assistance as needed. This organi-
zation dynamics worked well to solve issues quickly and
facilitate the fluidity of the lab.

5 Survey Results

To informally assess the effectiveness of the lab, we asked
students to complete two online surveys (see Appendix A)
made available through Google Forms. These surveys
were anonymous. To minimize the influence of the survey
questions on student behavior during the hands-on ses-
sions, the survey questions were not disclosed until after
the students completed each portion of the exercise that
was surveyed—prior knowledge of the questions would
reveal too much about the exercise. Survey questions were
phrased as boolean inquiries (1=yes, 0=no) followed by
open-ended clarifying questions in which students were
given the opportunity to comment.

Deceptiveness of Honey-patching. The first survey ex-
amined the deceptiveness of honey-patching by asking

students whether they had realized that they were inter-
acting with a decoy. All students answered “no” to this
question. From their responses, it is clear that the honey-
patched server successfully deceived students for the en-
tire duration of the first hands-on session, which lasted
about 30 minutes.

In the last part of the lab, after revealing the deception
to students, we asked, “If you were given enough time,
what would you attempt to do?” Responses included, “[I
would] look at the services that are running (in the decoy)
and try to exploit the honey-patched system.” Another
student said, “[I would] note files of interest and vari-
ous properties of them (who created them, permissions),”
and another mentioned, “I would try to find red flags that
could be used to probe a honey-patched system.” A par-
ticularly noteworthy response was that of a student who
said s/he would attempt to relay back to the honey-patch
components, in particular the front-end proxy, in order to
look for security flaws and exploit them.

These results are a preliminary indication of the effi-
cacy of honey-patching for raising student awareness of
cyber deception and counterintelligence gathering, and
its educational value for encouraging students to seek
deception-exposing strategies and examine exploit out-
comes critically rather than accepting them at face value.

Learning Experience. Students also answered general
questions about their educational experience. For exam-
ple, in response to the question, “Did you find this exercise
useful for expanding your cyber security education?” stu-
dents unanimously answered “yes.” In the open-ended
comments, students also said that it was exciting to see
how the exploit worked first-hand. Indeed, learning the
concepts involved in attacking and defending computer
systems in a safe and coherent context seems to entice
students’ curiosity and develop their interest in applied
cyber security.

We also received copious constructive feedback from
students on possible ways in which we could improve the
lab. These include proposals for new challenges, different
methods of attack, and alternative ways to defend against
them. Overall, this was a very successful learning experi-
ence with a very positive response from students. When

5

www.manaraa.com

asked, “Did this exercise increase your interest in the re-
search side of cyber security?” one student commented,

“I also enjoyed seeing the research being done to take ad-
vantage of these kinds of exploits in terms of defense.”

6 Discussion & Lessons Learned

Lab Organization. We organized this lab combining
short, alternating structured (lecturing, demo) and unstruc-
tured (free hands-on) sessions. This choice was made to
keep students focused and motivated, while giving them
freedom to experiment on their own. We believe that
this approach helped us to strike a good balance between
guided and exploratory learning.

In addition, we believe that concealing the honey-
patching deception from students during the first hands-on
session raised their interest relative to disclosing it im-
mediately, and was well received by students. While we
were initially concerned that students might feel betrayed
by instructors once the deception was revealed, our expe-
riences indicate that allowing students to experience a real
(but benign and educational) deception during the exercise
evokes an element of surprise that students find intrigu-
ing and memorable. In particular, we observed a notable
increase in interest after we introduced the research on
honey-patching and revealed that they had been interact-
ing with decoys since the beginning of the lab. This was
evidenced by a surge in questions and discussions.

Second, the delayed reveal opened the way for students
to imagine new application scenarios that we did not
even cover in our short presentation. For example, a very
interesting suggestion was to use honey-patching as a
strategy to enhance incidence response and help defenders
gather additional attack evidence shortly after a target is
compromised.

Research & knowledge transfer. Transferring research
findings and abstract knowledge into practical use is crit-
ical for improving the security posture of cyber space.
This includes creating a body of security guidelines, in-
formation materials, and more comprehensive education
programs focusing on fostering such transition. In our
opinion, information assurance and security programs
should complement the traditional classroom experience
with hands-on exercises in which students are invited to
try new research and become armed with state-of-the-art
tools and techniques to protect our privacy and the world
we live in from emerging cyber threats.

Cyber deception CTF. To cultivate additional student
involvement, we also intend to develop a CTF competition
at TexSAW with a focus on cyber deception and honey-
patching. This will be an offense-defense team challenge,
in which participants will learn and practice a variety of
skills spanning deception and anti-deception techniques.

We envision at least two different ways in which we can
organize this competition.

In the first mode, all participants will be taught about
honey-patching to use it to misdirect and deceive attacks.
In this style of competition, each team will not only try
to capture the flag, but also avoid submitting captured
decoy flags impersonating genuine flags. To make it more
challenging, flag validation and score computation will
only occur at the end of each predetermined phase.

A second approach is to enter teams trained in cyber-
deceptive active defense techniques into pre-existing CTF
competitions, concealing that intended strategy from rival
teams. If successful, this could provide empirical evidence
of the efficacy of honey-patching and other deceptive
defenses for waging cyber warfare. A challenge for such
evaluation is finding competitions with rules sufficiently
open-ended that they admit these deceptive techniques.
Many CTFs are structured such that flag validation is
immediate and automatic, making deception less valuable
in that context than it is in practice.

7 Conclusion

Cyber deception is an increasingly important component
of effective, real-world cyber defenses. It can be lever-
aged to level a battlefield that otherwise inherently favors
attackers, who succeed if they find just one vulnerability,
over defenders, who only succeed if they close all vulner-
abilities. By concealing which attacks succeed and which
fail, honey-patches give defenders valuable advance in-
telligence about attacker gambits, and offer opportunities
to misdirect attackers away from critical targets toward
non-critical targets.

However, like many cyber security paradigms, decep-
tion is an arms race. Effective deception depends upon
effective skills imparted by effective educational meth-
ods. Our initial experiences creating and running active
cyber defense lab exercises for computer science students
have indicated that honey-patching can be deployed in an
educational setting to teach cyber deception in ways that
overcome the otherwise predictable (and therefore non-
deceptive) classroom environment. We therefore advocate
incorporating such exercises into future CTF competitions
and into cyber educational curricula to bring these skills to
a broader array of upcoming cyber security professionals.

Acknowledgments

The research reported herein was supported in part by
AFOSR award FA9550-14-1-0173, NSF CAREER award
#1054629, NSF Scholarship For Service (SFS) award
#1027520, and ONR award N00014-14-1-0030. Any
opinions, conclusions, or recommendations expressed are
those of the authors and not necessarily of the AFOSR,
NSF, or ONR.

6

www.manaraa.com

A Survey Questions

A.1 First Survey
Q1. Did you succeed in attacking the server? (yes/no) If

yes, what actions did you take after you were able to
exploit the vulnerability?
Yes: 7/7, No: 0/7

Q2. Did the vulnerable server raise any red flags?
(yes/no)
Yes: 0/7, No: 7/7

Q3. If Yes to Q2: Did you think you were interacting
with a real server (i.e., not a trap)? (yes/no) If not,
please explain.

Q4. If Yes to Q2: Did you observe anything anomalous in
any of the following: file-system, server responses?
(yes/no) If yes, how long until you observed them?

A.2 Second Survey
Q1. After your were told that the system was honey-

patched, what actions did you take? Did you try to
hack the system? (yes/no)
Yes: 1/7, No: 6/7

Q2. If you were given enough time, what would you
attempt to do?

Q3. Did you find this exercise useful for expanding your
cyber security education? (yes/no)
Yes: 7/7, No: 0/7

Q4. Were the tutorial instructions clear? (yes/no) If not,
please suggest improvements.
Yes: 7/7, No: 0/7

Q5. Were the student instructors helpful and responsive?
(yes/no)
Yes: 7/7, No: 0/7

Q6. Did this exercise increase your interest in the re-
search side of cyber security? (yes/no) Please elabo-
rate.
Yes: 7/7, No: 0/7

References
[1] ALMESHEKAH, M. H., AND SPAFFORD, E. H. Planning and

integrating deception into computer security defenses. In Proc.
New Security Paradigms Workshop (NSPW) (2014), pp. 127–138.

[2] ARAUJO, F., AND HAMLEN, K. W. Compiler-instrumented, dy-
namic secret-redaction of legacy processes for attacker deception.
In Proc. 24th USENIX Security Sym. (2015). forthcoming.

[3] ARAUJO, F., HAMLEN, K. W., BIEDERMANN, S., AND KATZEN-
BEISSER, S. From patches to honey-patches: Lightweight at-
tacker misdirection, deception, and disinformation. In Proc. 21st
ACM Conf. Computer and Communications Security (CCS) (2014),
pp. 942–953.

[4] ARBAUGH, W. A., FITHEN, W. L., AND MCHUGH, J. Windows
of vulnerability: A case study analysis. IEEE Computer 33, 12
(2000).

[5] BILGE, L., AND DUMITRAS, T. Before we knew it: An empirical
study of zero-day attacks in the real world. In Proc. 19th ACM Conf.
Computer and Communications Security (CCS) (2012), pp. 833–
844.

[6] BOWEN, B. M., HERSHKOP, S., KEROMYTIS, A. D., AND
STOLFO, S. J. Baiting inside attackers using decoy documents. In
Proc. 5th Int. ICST Conf. Security and Privacy in Communication
Networks (SecureComm) (2009), pp. 51–70.

[7] BRUMLEY, D., POOSANKAM, P., SONG, D., AND ZHENG, J.
Automatic patch-based exploit generation is possible: Techniques
and implications. In Proc. 29th IEEE Sym. Security & Privacy
(S&P) (2008), pp. 143–157.

[8] BURNING GLASS TECHNOLOGIES. Job market intelligence:
Report on the growth of cybersecurity jobs, March 2014.

[9] FLORIAN, C. Most vulnerable operating systems and applications
in 2014. GFI Software, February 2015.

[10] FRIEDMAN, G. H. Evaluation report: The Department of Energy’s
unclassified cyber security program. Tech. Rep. DOE/IG-0897,
U.S. Dept. of Energy, Oct. 2013.

[11] FRITZ, J., LEITA, C., AND POLYCHRONAKIS, M. Server-side
code injection attacks: A historical perspective. In Proc. 16th Int.
Sym. Research in Attacks, Intrusions and Defenses (RAID) (2013),
pp. 41–61.

[12] HECKMAN, K. E., WALSH, M. J., STECH, F. J., O’BOYLE,
T. A., DICATO, S. R., AND HERBER, A. F. Active cyber de-
fense with denial and deception: A cyber-wargame experiment.
Computers & Security 37 (2013), 72–77.

[13] INTERNET CRIME COMPLAINT CENTER (IC3). 2014 internet
crime report. Federal Bureau of Investigation, May 2015.

[14] LANGNER, R. Stuxnet: Dissecting a cyberwarfare weapon. IEEE
Security & Privacy 9, 3 (2011), 49–51.

[15] LINGENHELD, M. The unfortunate growth sector: Cybersecurity.
Forbes (April 2015).

[16] LUO, X., BRODY, R., SEAZZU, A., AND BURD, S. Social
engineering: The neglected human factor for information security
management. Information Resources Management J. (IRMJ) 24, 3
(2011), 1–8.

[17] MINK, M., AND FREILING, F. C. Is attack better than defense?
teaching information security the right way. In Proc. 3rd Annual
Conf. Information Security Curriculum Development (InfoSecCD)
(2006), pp. 44–48.

[18] NIST. The Shellshock Bash Vulnerability. https://web.nvd.nist.
gov/view/vuln/detail?vulnId=CVE-2014-6271, Sep. 2014.

[19] PATRICIU, V.-V., AND FURTUNA, A. C. Guide for designing
cyber security exercises. In Proc. 8th WSEAS Int. Conf. Recent
Advances in E-Activities, Information Security and Privacy (2009),
pp. 172–177.

[20] SALEM, M. B., AND STOLFO, S. J. Decoy document deployment
for effective masquerade attack detection. In Proc. 8th Int. Conf.
Detection of Intrusions and Malware, and Vulnerability Assess-
ment (2011), pp. 35–54.

[21] TWITCHELL, D. P. Social engineering in information assurance
curricula. In Proc. 3rd Annual Conf. Information Security Curricu-
lum Development (InfoSecCD) (2006), pp. 191–193.

[22] U.S. AIR FORCE MATERIEL COMMAND. Capabilities for cyber
resiliency. Broad Agency Announcement, Solicitation BAA-RIK-
14-07, August 2014.

[23] VIGNA, G. Teaching network security through live exercises.
In Security Education and Critical Infrastructures, C. Irvine and
H. Armstrong, Eds. Kluwer Academic Publishers, 2003, pp. 3–18.

[24] YUILL, J., DENNING, D., AND FEER, F. Using deception to
hide things from hackers: Processes, principles, and techniques. J.
Information Warfare 5, 3 (2006), 26–40.

7

